Dr. Raksha Gupta

Associate Professor, Department of Chemistry, A.S. (P.G.) College, Mawana, Meerut

Abstract—The molecular structure of (2E)-1-(4-bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-onewith $C_{15}H_{10}Br_1N_1O_3$ empirical formula was simulated using B3LYP levels of density functional theory. After geometrical optimization on the ground state of the chalcone studied a detailed vibrational spectral analysis was carried out and the assignments of the observed bands have been proposed on the basis of values reported in literature. UV-Visible spectral study was done by time-dependent TD-DFT approach B3LYP level and Electronic transitions were calculated, and the important contributions from the molecular orbitals to the electronic transitions were investigated. HOMO–LUMO analysis has been done in order to determine the way the molecule interacts with other species. HOMO and LUMO energies were calculated.. On the basis of vibrational analysis, other molecular properties such as ionization energy, electron affinity, chemical potential, global hardness and electrophilicity were calculated by time-dependent TD-DFT approach. The electrical properties determined were the dipole moment (μ), mean polarizability (α), anisotropy of the polarizability ($\Delta \alpha$), first and second order hyperpolarizabilities (β and γ) in terms of x, y, z components from Gaussian 09 output.

KEYWORDS: DFT, HOMO, LUMO, CHALCONE, VIBRATIONAL SPECTRA, ELECTRONIC TRANSITIONS

INTRODUCTION

Chalcone is a compound consists of two aromatic rings linked by an unsaturated α , β -ketone, with various substituent's on the two aromatic rings. General Structure of Chalcones is shown in Figure-1

Figure-1: General Structure of Chalcones

Chalcone could be easily found in most of the plants naturally and is an intermediate precursor of flavonoids and is of lavonoids [1]. Due to the extended conjugation, the complete delocalisation of p electrons on both the benzene rings makes it good for wide range of applications in the fields of biology and biochemistry[2,3] such as antitumor [4,5], anti-inflammatory[6–8], and ant malarial [9] agents. In modern years, chalcones have been used in the field of material science as optical limiting [10], electrochemical sensing [11] and Langmuir film [12]. Appreciation of these findings motivated us to carry out computational study of chalcones.

MATERIALS AND METHODS

Theoretical Calculation: The entire calculation was performed at DFT levels on a personal laptop using Gaussian(R) 09 program [13] program package, invoking gradient geometry optimization [13,14]. In the present study, the DFT/B3LYP/6-31G (d) basis set level was used to calculate the optimized parameters and vibrational wave numbers of the title molecule. The vibrational frequency assignments were made with a high degree of accuracy.

RESULTS AND DISCUSSIONS

Geometrical analysis: The first task for the computational work is to determine the optimized geometries of the studied chalcone molecule. The molecular structure along with numbering of atoms of (2E)-1-(4-bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one is shown in Fig. 2. The geometrical parameters of chalconemolecule studied are calculated using B3LYP with 6-31G (d) level of theory. In this study title chalcone molecule consist of two phenyl and a prop-2-en-1-one molecules. The optimized bond lengths, bond angles and dihedral angles of the studied are listed in Table-1 and is in accordance with atom numbering scheme as shown in Figure.2.

FIGURE-2: Optimised geometry of (2E)-1-(4-bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one

TABLE-1: OPTEMISED GEOMETERICAL PARAMETERS OF (2 E)-1-(4-bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one at B3LYP/6-31G (d): bond length (A°), bond angle(°), dihedral angles(°)

	Atoms of	Bond length			Dihedral angle between	
S. No.	molecule	(Å)	Angle between atoms	Bond angle (°)	atoms	Dihedral angle (°)
1	R(1,2)	1.3903	A(2,1,6)	120.9115	D(6,1,2,3)	1.305
3	R(1,6)	1.404	A(2,1,7)	120.4759	D(6,1,2,8)	-179.0696
3	R(1,7)	1.0851	A(6,1,7)	118.6126	D(7,1,2,3)	-178.6699
4	R(2,3)	1.3964	A(1,2,3)	119.0378	D(7,1,2,8)	0.9554
5	R(2,8)	1.0845	A(1,2,8)	120.8244	D(2,1,6,5)	-1.7919
6	R(3,4)	1.3935	A(3,2,8)	120.1367	D(2,1,6,11)	-178.2255
7	R(3,27)	1.9079	A(2,3,4)	121.2643	D(7,1,6,5)	178.1835
8	R(4,5)	1.3946	A(2,3,27)	119.3584	D(7,1,6,11)	1.7499
9	R(4,9)	1.0844	A(4,3,27)	119.376	D(1,2,3,4)	0.115
10	R(5,6)	1.4029	A(3,4,5)	119.1164	D(1,2,3,27)	179.6952
11	R(5,10)	1.0851	A(3,4,9)	120.1977	D(8,2,3,4)	-179.513
12	R(6,11)	1.4993	A(5,4,9)	120.6848	D(8,2,3,27)	0.0672
13	R(11,12)	1.4867	A(4,5,6)	120.7284	D(2,3,4,5)	-1.0104
14	R(11,26)	1.2272	A(4,5,10)	119.0823	D(2,3,4,9)	178.6181
15	R(12,13)	1.0872	A(6,5,10)	120.1601	D(27,3,4,5)	179.4095
16	R(12,14)	1.3479	A(1,6,5)	118.9164	D(27,3,4,9)	-0.962
17	R(14,15)	1.088	A(1,6,11)	117.6768	D(3,4,5,6)	0.5019
18	R(14,16)	1.4667	A(5,6,11)	123.3038	D(3,4,5,10)	178.538
19	R(16,17)	1.4082	A(6,11,12)	121.4664	D(9,4,5,6)	-179.1247
20	R(16,18)	1.4098	A(6,11,26)	120.1965	D(9,4,5,10)	-1.0886
21	R(17,19)	1.3901	A(12,11,26)	118.328	D(4,5,6,1)	0.8733
22	R(17,20)	1.0866	A(11,12,13)	112.6068	D(4,5,6,11)	177.0941
23	R(18,21)	1.3876	A(11,12,14)	125.5042	D(10,5,6,1)	-177.1417
24	R(18,22)	1.0849	A(13,12,14)	121.348	D(10,5,6,11)	-0.9209
25	R(19,23)	1.3924	A(12,14,15)	118.4037	D(1,6,11,12)	-153.1197
26	R(19,24)	1.0829	A(12,14,16)	126.887	D(1,6,11,26)	25.7623
27	R(21,23)	1.3957	A(15,14,16)	114.6894	D(5,6,11,12)	30.6156
28	R(21,25)	1.083	A(14,16,17)	118.4501	D(5,6,11,26)	150.5023
29	R(23,28)	1.4706	A(14,16,18)	123.2403	D(6,11,12,13)	-159.6076
30	R(28,29)	1.2307	A(17,16,18)	118.3089	D(6,11,12,14)	28.7815
31	R(28,30)	1.2308	A(16,17,19)	121.4049	D(26,11,12,13)	21.4901
32			A(16,17,20)	119.2804	D(26,11,12,14)	-150.1208
33			A(19,17,20)	119.3145	D(11,12,14,15)	-4.7208
34			A(16,18,21)	121.0001	D(11,12,14,16)	173.5631
35			A(16,18,22)	120.1182	D(13,12,14,15)	-175.647

Journal of Basic and Applied Engineering Research p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 6, Issue 6; July-September, 2019

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	A(21,18,22)	118.8815	D(13,12,14,16)	2.6368
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	A(17,19,23)	118.5202	D(12,14,16,17)	-176.5594
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	A(17,19,24)	121.8194	D(12,14,16,18)	3.7308
40 $A(18,21,23)$ $118,9259$ $D(15,14,16,18)$ $-177,9306$ 41 $A(18,21,25)$ $121,6104$ $D(14,16,17,19)$ $-179,8595$ 42 $A(23,21,25)$ $119,4637$ $D(14,16,17,20)$ 0.2952 43 $A(19,23,21)$ 121.8397 $D(18,16,17,20)$ $-179,8895$ 44 $A(19,23,28)$ $119,0738$ $D(14,16,18,22)$ $179,9805$ 45 $A(21,23,28)$ $119,0738$ $D(14,16,18,22)$ -0.0729 47 $A(23,28,29)$ $117,6044$ $D(14,16,18,22)$ $-179,7831$ 46 $A(23,28,30)$ $112,47821$ $D(17,16,18,22)$ -100729 47 $A(29,28,30)$ $124,7821$ $D(16,17,19,23)$ 0.0834 50 $D(16,17,19,23)$ $179,9344$ $D(16,17,19,24)$ $-179,9344$ 51 $D(20,17,19,24)$ -0.0892 $D(22,18,21,23)$ $179,9864$ 54 $D(16,18,21,23)$ $-102,18,21,23$ $-102,18,21,23$ $-102,9,814$ 55 $D(17,19,23,28)$ $179,9309$ $D(17,$	39	A(23,19,24)	119.6603	D(15,14,16,17)	1.7792
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40	A(18,21,23)	118.9259	D(15,14,16,18)	-177.9306
42 $A(23,21,25)$ 119.4637 $D(14,16,17,20)$ 0.2952 43 $A(19,23,21)$ 121.8397 $D(18,16,17,19)$ -0.1352 44 $A(19,23,28)$ 119.0864 $D(18,16,17,20)$ -179.9805 45 $A(21,23,28)$ 119.0738 $D(14,16,18,21)$ 179.8133 46 $A(23,28,29)$ 117.6044 $D(14,16,18,21)$ 0.0729 47 $A(23,28,30)$ 117.6135 $D(17,16,18,21)$ 0.1031 48 $A(29,28,30)$ 124.7821 $D(17,16,18,21)$ 0.1031 49 $D(16,17,19,23)$ 0.0834 50 $D(16,17,19,23)$ 179.9287 51 $D(20,17,19,23)$ 179.9287 52 $D(20,17,19,23)$ 179.9287 53 $D(16,18,21,25)$ -179.9814 55 $D(22,18,21,25)$ -0.0938 57 $D(22,18,21,23)$ 0.0027 58 $D(17,19,23,28)$ 179.9309 59 $D(24,19,23,21)$ -0.0516 61 $D(24,19,23,28)$ -0.0516 61 $D(24,19,2$	41	A(18,21,25)	121.6104	D(14,16,17,19)	-179.8595
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	A(23,21,25)	119.4637	D(14,16,17,20)	0.2952
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	A(19,23,21)	121.8397	D(18,16,17,19)	-0.1352
45 $A(21,23,28)$ $119,0738$ $D(14,16,18,21)$ $179,8133$ 46 $A(23,28,29)$ $117,6044$ $D(14,16,18,22)$ -0.0729 47 $A(23,28,30)$ $117,6135$ $D(17,16,18,21)$ 0.1031 48 $A(29,28,30)$ $124,7821$ $D(17,16,18,22)$ $-179,7831$ 49 $D(16,17,19,23)$ 0.0834 50 $D(16,17,19,23)$ $179,9287$ 51 $D(20,17,19,23)$ $179,9287$ 52 $D(16,18,21,23)$ -0.0892 53 $D(16,18,21,23)$ -0.0212 54 $D(16,18,21,23)$ -0.0988 55 $D(16,18,21,23)$ -0.0938 57 $D(17,19,23,28)$ $179,9814$ 55 $D(17,19,23,28)$ $179,9309$ 57 $D(17,19,23,28)$ $179,9309$ 59 $D(17,19,23,28)$ $179,9309$ 59 $D(17,19,23,28)$ $179,9309$ 60 $D(12,19,23,28)$ -0.0516 61 $D(24,19,23,28)$ -0.0516 61 $D(18,21,23,19)$ -0.0334	44	A(19,23,28)	119.0864	D(18,16,17,20)	-179.9805
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45	A(21,23,28)	119.0738	D(14,16,18,21)	179.8133
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	A(23,28,29)	117.6044	D(14,16,18,22)	-0.0729
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47	A(23,28,30)	117.6135	D(17,16,18,21)	0.1031
49 $D(16,17,19,23)$ 0.0834 50 $D(16,17,19,24)$ -179.9344 51 $D(20,17,19,23)$ 179.9287 52 $D(20,17,19,23)$ 179.9287 53 $D(20,17,19,24)$ -0.0892 54 $D(16,18,21,23)$ -0.0212 54 $D(22,18,21,23)$ 179.9814 55 $D(22,18,21,23)$ 179.8664 56 $D(22,18,21,25)$ -0.0938 57 $D(17,19,23,21)$ 0.0027 58 $D(24,19,23,21)$ -179.9798 60 $D(24,19,23,21)$ -179.9798 61 $D(18,21,23,19)$ -0.0334 62 $D(18,21,23,19)$ -0.0334 63 $D(18,21,23,28)$ -179.9616 64 $D(18,21,23,28)$ -179.9616 65 $D(19,23,28,29)$ -179.9955 66 $D(19,23,28,29)$ -179.9955 66 $D(19,23,28,30)$ -0.0091 67 $D(21,23,28,30)$ -0.0091 67 $D(21,23,28,30)$ -0.00652 68 $D(21$	48	A(29,28,30)	124.7821	D(17,16,18,22)	-179.7831
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49			D(16,17,19,23)	0.0834
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50			D(16,17,19,24)	-179.9344
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	51			D(20,17,19,23)	179.9287
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52			D(20,17,19,24)	-0.0892
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53			D(16,18,21,23)	-0.0212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	54			D(16,18,21,25)	-179.9814
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55			D(22,18,21,23)	179.8664
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	56			D(22,18,21,25)	-0.0938
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57			D(17,19,23,21)	0.0027
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	58			D(17,19,23,28)	179.9309
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59			D(24,19,23,21)	-179.9798
61 D(18,21,23,19) -0.0334 62 D(18,21,23,28) -179.9616 63 D(25,21,23,19) 179.9277 64 D(25,21,23,28) -0.0006 65 D(19,23,28,29) -179.9955 66 D(19,23,28,30) -0.0091 67 D(21,23,28,30) 179.9211	60			D(24,19,23,28)	-0.0516
62 D(18,21,23,28) -179.9616 63 D(25,21,23,19) 179.9277 64 D(25,21,23,28) -0.0006 65 D(19,23,28,29) -179.9955 66 D(19,23,28,30) -0.0091 67 D(21,23,28,30) 179.9211	61			D(18,21,23,19)	-0.0334
63 D(25,21,23,19) 179.9277 64 D(25,21,23,28) -0.0006 65 D(19,23,28,29) -179.9955 66 D(19,23,28,30) -0.0091 67 D(21,23,28,29) -0.0652 68 D(21,23,28,30) 179.9211	62			D(18,21,23,28)	-179.9616
64 D(25,21,23,28) -0.0006 65 D(19,23,28,29) -179.9955 66 D(19,23,28,30) -0.0091 67 D(21,23,28,29) -0.0652 68 D(21,23,28,30) 179.9211	63			D(25,21,23,19)	179.9277
65 D(19,23,28,29) -179.9955 66 D(19,23,28,30) -0.0091 67 D(21,23,28,29) -0.0652 68 D(21,23,28,30) 179.9211	64			D(25,21,23,28)	-0.0006
66 D(19,23,28,30) -0.0091 67 D(21,23,28,29) -0.0652 68 D(21,23,28,30) 179.9211	65			D(19,23,28,29)	-179.9955
67 D(21,23,28,29) -0.0652 68 D(21,23,28,30) 179.9211	66			D(19,23,28,30)	-0.0091
68 D(21,23,28,30) 179.9211	67			D(21,23,28,29)	-0.0652
	68			D(21,23,28,30)	179.9211

Vibrational Assignments

The fundamental vibrations of a non-linear molecule which contains N atoms is equal to (3N-6), apart from three translational and three rotational degrees of freedom [15, 16]. The studied chalcone molecule belongs to Cs point group symmetry and has 30 atoms; hence 84 normal modes of vibrations are possible. All vibrations are active in both IR and Raman absorption

The vibrational assignments were made by the values reported in literature [15]. In the aromatic compounds, the C-H stretching vibrations normally occur at 3100-3000 cm⁻¹. In this region, the bands are not affected appreciably by the nature of substituents [15]. The C-H stretching vibration was observed at 3078 cm⁻¹ [17], and these peaks were calculated at 3074 and 3070 cm⁻¹(mode77 and 76 respectively) for B3LYP level. The aromatic ring in-plane C-H bending vibrations are usually weak and observed in the region 1300-1000 cm^{-1} , while the out-of-plane ones lie in the region 900-650 cm^{-1} [18]. In our calculations inplane C-H bending vibrations are assigned at the wave number regions of 1291-1045cm⁻¹(mode 60 to 48) and 680cm⁻¹(mode 30). The peak at 807 cm⁻¹ (mode 34) for B3LYP is assigned as the out of plane C-H bending vibration. The IR spectrum shows the characteristic absorption bands at 1650 cm-1 due to C=O group of α , β -unsaturated carbonyl compound [17]. This characteristic C=O band is calculated at 1600 cm⁻¹(mode72) for B3LYP level. The NO₂ stretching vibrations which are another characteristic vibration mode were observed at 1519 cm⁻¹ for asymmetric stretch and 1312 cm⁻¹ for symmetric stretch [17]. It is well known that asymmetric vibrations appear at higher frequencies than symmetric ones for nitro group vibrations. These vibrations were assigned at 1548 cm⁻¹ (mode 68) and 1340 cm⁻¹ (mode 63) for B3LYP level. The ring C=C stretching vibrations usually occur in the region 1625-1280 cm⁻¹ [19]. For aromatic six- -membered rings such as benzene, there are two or three bands in this region due to skeletal vibrations, the strongest one at about 1500 cm⁻¹ [20]. The peak observed at 1569 cm⁻¹ was assigned the C=C stretching vibration [17]. This vibration mode was calculated at the ranges of 1589-1192 cm⁻¹ (mode 71 to55) for B3LYP level The calculated peaks at 986 cm⁻¹ (mode 45) and 825 cm⁻¹ (mode 36) for B3LYP level were attributed to in plane C-C bending vibrations. The out of plane C-C vibration was calculated at 747 and 736 cm-1 (mode 33 and 32). .The frequency were calculated using DFT/B3LYP/6-31G (d) basis set are listed in Table 2 and presented in figure 3 and 4

	FREQUENCY (cm ⁻¹)						
	((1			RAMAN		DEPOLAR-U	
MODE	Unscaled	Scaled	INFRARED	ACTIVITY	DEPOLR-P		Assignments
1	18.26	17.54	0.0250	7.2193	0.7499	0.8571	
2	24.98	24.00	0.3576	4.68/0	0.7030	0.8256	
3	35.32	33.94	1.8251	4.1855	0.7368	0.8485	
4	64.39	61.87	0.0455	0.23/4	0.7192	0.8367	
5	/1.04	08.83	3.6/01	4.1/68	0./180	0.8339	
0	84.08 104.01	81.30	1.10/4	1.304/	0.6031	0.7340	
/	104.01	122.22	2.8709	2.6245	0.6706	0.8003	
0	157.75	152.55	4.0309	1 1078	0.0290	0.7727	
<u> </u>	177.13	170.19	2.7038	3 69/0	0.5807	0.7347	
10	235.11	225.89	0.3828	3.0940	0.5807	0.7975	
12	233.11	237.80	1 3306	3 5019	0.0032	0.8512	
12	247.31	254.01	3 5849	1 7964	0.4718	0.6312	
13	283.69	272 57	1 0835	1 3086	0.4710	0.7843	
15	333.19	320.13	3 4006	3 7303	0.6169	0.7631	
15	352.93	339.10	2 4792	1 4906	0.0109	0.4648	
17	419.48	403.04	0.3513	0.1224	0.3020	0.4046	
18	425.61	408.92	3 2220	1 6009	0.4076	0.5791	
19	423.01	411.98	8 7781	2 1998	0.4219	0.5934	
20	454 53	436.71	15 0496	1 3386	0.4219	0.5754	
20	484.83	465.82	4 4725	0.8462	0.4508	0.5580	
21	404.05	405.02	3 1132	1 5211	0.5007	0.5300	
22	536.76	515.72	1 3077	2 6273	0.3044	0.8571	
23	567.03	544.80	7 1646	7 7/86	0.1944	0.3256	
24	639.64	614 56	12 2622	8 3070	0.1044	0.5250	C-Br stretching
25	641 64	616.49	1 2.2022	5 3818	0.7294	0.8436	C-Di succennig
20	648.88	623.44	7 8035	6 8708	0.7294	0.6744	
28	672.02	646.54	6.0558	2 2510	0.5033	0.0744	
20	691.90	664.78	7 5320	14 4244	0.1135	0.7438	
2)	071.70	004.78	1.5520	14.4244	0.1155	0.2038	In-plane C-H
30	708 29	680.52	11 3850	0.6343	0.4468	0.6176	bending vibration
31	748.45	719.11	8 1982	9 5731	0.2203	0.3611	bending violation
51	740.45	/1).11	0.1702	9.5751	0.2203	0.5011	C-C Out-of-plane
32	766 95	736.89	17 1781	5 5585	0 1470	0.2563	bending vibration
52	100.95	750.09	17.1701	5.5505	0.1170	0.2303	Out-of-plane
33	777 49	747.01	46 8139	8 3277	0 7493	0.8567	bending vibration
55	111.15	/ 1/.01	10.0155	0.5277	0.7 195	0.0207	Out-of-plane
							bending vibration
34	840.26	807.32	22.6013	22,1049	0.3151	0.4793	of C-H
35	848.44	815.18	3.1492	5.3339	0.5727	0.7283	
							C-C In-plane
36	859.23	825.55	55.0375	19.5331	0.2712	0.4267	bending vibration
37	859.60	825.91	12.7890	4.8876	0.7218	0.8385	<u> </u>
							In-plane C-H
38	873.44	839.20	19.9595	10.6197	0.1042	0.1887	bending vibration
39	886.43	851.68	31.4429	7.7609	0.2588	0.4112	
40	913.27	877.47	9.9208	20.0804	0.4941	0.6614	
41	982.97	944.44	0.1598	0.5956	0.5340	0.6962	
42	986.53	947.86	4.7226	1.9562	0.6648	0.7986	
43	992.25	953.35	3.7459	5.8414	0.5638	0.7211	
44	995.91	956.87	0.9858	2.2693	0.4359	0.6072	
							C-C In-plane
45	1026.78	986.53	72.8177	0.7215	0.4452	0.6161	bending vibration
46	1031.66	991.22	35.9767	43.5307	0.2701	0.4254	Ŭ Ŭ
		•	•		•	•	

 TABLE-2: Calculated Frequencies of (2E)-1-(4-bromophenyl)-3-(4-nitrophenyl) prop-2-en-1-one

Journal of Basic and Applied Engineering Research p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 6, Issue 6; July-September, 2019

47	1032.83	992.34	3.8371	4.6051	0.5441	0.7048	
.,							In-plane C-H
48	1088.32	1045.66	17.8314	142.9800	0.1710	0.2920	bending vibration
							In-plane C-H
49	1101.13	1057.97	100.1140	22.3961	0.3316	0.4981	bending vibration
							In-plane C-H
50	1133.18	1088.76	60.2399	265.4497	0.2604	0.4132	bending vibration
<i>с</i> 1	1140.04	1005.05	7 4021	1 4001	0.6054	0.7(0)	In-plane C-H
51	1140.04	1095.35	7.4931	1.4901	0.6254	0.7696	bending vibration
52	1140.15	1095.46	3.4526	0.9979	0.5426	0.7035	
53	1211.60	1164.11	40.9305	9.5249	0.3669	0.7236	
34	1210.79	1109.09	0.0230	112.0247	0.2409	0.3900	In plana C H
55	1240 74	1192 10	30 5939	246 6901	0.3716	0 5418	hending vibration
55	1240.74	11)2.10	50.5757	240.0701	0.5710	0.5410	Aromatic six
							membered ring
56	1287.00	1236.55	190.2956	409.2981	0.2159	0.3551	skeletal vibration
							Aromatic six
							membered ring
57	1314.62	1263.08	251.6677	183.8896	0.4522	0.6228	skeletal vibration
							In-plane C-H
58	1334.00	1281.71	23.3148	1.9141	0.2742	0.4304	bending vibration
50	1225.95	1202.40	0.6506	2 4217	0.0000	0.2740	In-plane C-H
59	1335.85	1283.48	8.0380	3.4317	0.2306	0.3748	bending vibration
60	1344.65	1201.04	34 7463	5 9568	0.3172	0.4817	hending vibration
00	1344.03	1291.94	54.7405	5.7508	0.5172	0.4017	Aromatic six
							membered ring
61	1362.58	1309.17	4,4209	48.2609	0.2562	0.4079	skeletal vibration
							Aromatic six
							membered ring
62	1385.74	1331.42	22.1449	16.2914	0.6499	0.7878	skeletal vibration
							Symmetric NO ₂
63	1395.29	1340.59	457.4470	837.8734	0.2972	0.4582	stretching vibration
							Aromatic six
64	1429 57	1202 10	22 5521	10.6708	0.2105	0.3600	membered ring
04	1438.37	1382.18	25.5551	10.0708	0.2195	0.3000	Aromatic six
							membered ring
65	1458.23	1401.07	21.6860	64,1772	0.3694	0.5396	skeletal vibration
				• • • • • • • • • • • • • • • • • • • •			Aromatic six
							membered ring
66	1530.59	1470.59	11.3127	5.0939	0.3232	0.4885	skeletal vibration
							Aromatic six
(7	1.541.50	1 401 55	6.0200	20.2102	0.000-		membered ring
67	1541.68	1481.25	6.8208	20.2189	0.2995	0.4610	skeletal vibration
69	1612.00	1540 00	00 1757	51 5165	0.2502	0.5199	Asymmetric NO ₂
08	1612.08	1548.89	88.1/5/	54.5465	0.3502	0.5188	A remetie
							membered ring
69	1615.02	1551 72	21.7408	13,9114	0.1851	0.3123	skeletal vibration
							Aromatic six
							membered ring
70	1642.02	1577.65	120.1142	363.5208	0.3921	0.5633	skeletal vibration
							Aromatic six
							membered ring
71	1653.97	1589.13	16.8076	2350.7992	0.3636	0.5333	skeletal vibration
							C=O vibration of
70	1665.40	1.000.1.4	112.00(1	140.1506	0.2287	0.50(0	α,β -unsaturated
72	1665.42	1600.14	112.9861	149.1596	0.3386	0.5060	carbonyl group

Journal of Basic and Applied Engineering Research p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 6, Issue 6; July-September, 2019

							Aromatic six
							membered ring
73	1690.79	1624.51	39.2217	1652.3325	0.3288	0.4949	skeletal vibration
							Aromatic six
							membered ring
74	1730.60	1662.76	222.2567	556.9831	0.1974	0.3297	skeletal vibration
							Aromatic six
							membered ring
75	3180.02	3055.36	5.9680	48.2342	0.2838	0.4421	skeletal vibration
							Aromatic six
							membered ring
76	3195.45	3070.18	7.2491	52.3114	0.4389	0.6101	skeletal vibration
							Aromatic six
							membered ring
77	3199.78	3074.35	11.1474	46.3252	0.3953	0.5666	skeletal vibration
78	3213.19	3087.24	3.1509	44.2085	0.5094	0.6749	
79	3219.47	3093.27	0.1818	51.8316	0.7183	0.8361	
80	3219.74	3093.52	4.6958	42.1573	0.4286	0.6000	
81	3229.32	3102.73	3.4001	46.6307	0.1533	0.2659	
82	3232.34	3105.63	2.0514	193.1281	0.1674	0.2868	
83	3254.11	3126.55	0.8104	90.0575	0.2684	0.4232	
84	3254.79	3127.20	0.9773	89.7059	0.2258	0.3684	

HOMO- LUMO and Reactive descriptors

The Eigen values of HOMO (π - donor) and LUMO (π - acceptor) and their energy gap reflect the chemical activity of the molecules. Recently, the energy gap between HOMO and LUMO has been used to prove the microscopic NLO activity from intra-molecular charge transfer (ICT). Also, energies of HOMO and LUMO are used for the determination of global reactivity descriptors. It is important that Ionization potential (I), Electron affinity (A), Electrophilicity (ω), Chemical potential (μ), Electro negativity (χ), Hardness (η) and Softness (S) be put into a MO framework. We focus on the HOMO and LUMO energies in order to determine the interesting molecular/atomic properties and chemical quantities. In simple molecular orbital theory approaches, the HOMO energy is related to the ionization potential (I) and the LUMO energy has been used to estimate the electron affinity (A) respectively by the following relations[28]:

I = -EHOMO and

A = -ELUMO

The chemical potential of the molecule is $(\phi) = -(I + A)/2$.

The absolute hardness of the molecule is $(\eta) = (I - A)/2$.

The softness is the inverse of the hardness (S) = $1/\eta$.

The electro negativity of the molecule is $(\chi) = (I + A)/2$.

The electrophilicity index of the molecule is $(\omega) = \frac{\phi^2}{2\eta}$.

This value assesses energy decreasing due to maximal electron flow between donor (HOMO) and acceptor (LUMO) shown in figure 7. The calculated values of the global reactivity descriptors for the title molecule are collected in table 5 and Energy gap (ΔE) in HOMO LUMO is tabulated in table-4. In terms of chemical hardness, if a molecule has a large HOMO–LUMO gap, it is hard. Conversely, if the HOMO–LUMO gap is small, it is soft. One can also relate molecular stability to hardness, which means that the molecule with smaller HOMO–LUMO gap is more reactive.

LUMOMO 85 = -0.07111

LUMO MO 84= -0.10854

Electrostatic potential (ESP)

Molecular electrostatic potential (MEP) or Electrostatic potential(ESP) maps are very useful three dimensional diagrams which are used to visualize the charge distributions and charge related properties of molecules. Also, MEP or ESP picture has been used to predict the reactive sites for electrophilic and nucleophilic attack, and in studies of biological recognition and hydrogen bonding interactions [24-25]. The ESP of the studied compound calculated using B3LYP method with 6-31G (d) basis set is shown in Fig.8a, 8b, and 8c. It can be seen from the ESP figure; negative regions (red) are mainly localized over the carbonyl oxygen atom and bromine atom while the positive regions (blue) are distributed over the H-atoms

Figure 8c ELECTRON DENSITY TOTAL SCF DENSITY (Isovalue=0.0004,(mapped with ESP)

NLO PROPERTIES

NLO is the important role of current research because it provides the key functions of frequency shifting, optical logic, optical modulation, optical switching and optical memory for the technologies in areas such as telecommunications, signal processing and optical interconnection [21, 22].

The density functional theory has been used to calculate the dipole moment (μ), mean polarizability (α), anisotropy of the polarizability ($\Delta \alpha$), first and second order hyperpolarizabilities (β and γ) in terms of x, y, z components from Gaussian 09 output.

For a molecule the μ , α , $\Delta \alpha$, β and γ are defined as follows [23]:

$$\mu = (\mu_{x} + \mu_{y} + \mu_{z})^{1/2}$$

$$<\alpha > = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$$

$$\Delta \alpha = \frac{1}{\sqrt{2}}[(\alpha_{xx} - \alpha_{yy})^{2} + (\alpha_{yy} - \alpha_{zz})^{2} + (\alpha_{zz} - \alpha_{xx})^{2} + 6(\alpha_{xy}^{2} + \alpha_{yz}^{2} + \alpha_{zx}^{2})]^{1/2}$$

$$\beta = [(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^{2} + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^{2} + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^{2}]^{1/2}$$

$$\gamma = \frac{1}{5}[\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2(\gamma_{xxyy} + \gamma_{xxzz} + \gamma_{yyzz})]$$

Dinalo moment (Dahua).						
Dipole moment (Debye):						
μ _X	-2.0340					
μ _Y	-0.7903;					
μ_Z	0.1349					
l otal μ	2.//30					
P	olarizability in a.u.					
α _{XX}	-166.2574					
αγγ	-134.5106					
α_{ZZ}	-123.2827					
α _{XY}	11.6527					
$\alpha_{\rm XZ}$	2.7649					
α _{YZ}	0.2824					
α	-141.3502					
Δα	43.8347					
Δα	43.8347 x 10 ⁻³⁰ esu					
First order	hyper polarizability in a.u.					
β _{XXX}	-496.8919					
β_{YYY}	-94.0155					
β _{ZZZ}	1.2173					
β_{XYY}	-40.2855					
β_{XXY}	81.6859					
β_{XXZ}	-15.7793					
β_{XZZ}	-42.0926					
β _{YZZ}	-15.1151					
β _{YYZ}	6.1362					
β _{XYZ}	14.0173					
β	579.98098					
β	579.98098 x 10 ⁻³⁰ esu					
Second order hyper polarizability in a.u.						
γχχχχ	-16800.9538					
γγγγγ	-1973.3926					
Ŷzzzz	-282.8921					
γχχχγ	769.9938					
γxxxz	45.8793					
γγγγχ	321.8364					
γγγγΖ	14.5233					
γγγγγγ	-1.9342					
γζζζχ	-7.5568					
γχχγχ	-2645.3294					
γχχ77	-2296.8207					
γγγΖ	-323.9044					
γχχγΖ	-52.1833					
γγγχζ	29.3319					
γ _{77XV}	48.5874					
γ	-4551.72422					
γ	-4551.72422 x 10 ⁻³⁰ esu					

TABLE-6: Calculated dipole moment (μ, in Debye), mean polarizability (α₀, in a.u.), anisotropy of polarizability (Δα, in a.u.) and first hyper polarizability (β, in a.u.) of (2*E*)-1-(4-bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one

References

- [1] G. Achanta, A. Modzelewska, L. Feng, S. R. Khan, and P.Huang, "A boronic-chalcone derivative exhibits potent anticancer Activity through inhibition of the proteasome, "MolecularPharmacology, vol. 70, no. 1, pp. 426–433, 2006.
- [2] S.N.A. Bukhari, M. Jasamai, I. Jantan, and W.Ahmad, "Reviews of methods and various catalysts used for chalcone synthesis," Mini-Reviews in Organic Chemistry, vol. 10, pp. 73–83, 2013.
- [3] S. N. A. Bukhari, M. Jasamai, and I. Jantan, "Synthesis and Biological evaluation of chalcone derivatives (mini review)," Mini Review of Medicinal Chemistry, vol. 12, no. 13, pp. 1384–1403, 2012.
- [4] G. Saydam, H. H. Aydin, F. Sahin et al., "Cytotoxic andInhibitory effects of 4, 4□-dihydroxy chalcone (RVC-588) on Proliferation of human leukemic HL-60 cells," LeukemiaResearch, vol. 27, no. 1, pp. 57–64, 2003.

Journal of Basic and Applied Engineering Research

p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 6, Issue 6; July-September, 2019

- [5] L. Mishra, R. Sinha, H. Itokawa et al., "Anti-HIV and cytotoxicactivities of Ru(II)/Ru(III) polypyridyl complexes containing2,6-(2 benzimidazolyl)-pyridine/chalcone as co-ligand,"Bioorganic andMedicinal Chemistry, vol. 9, no. 7, pp. 1667–1671,2001.
- [6] H.-H. Ko, L.-T. Tsao, K.-L. Yu, C.-T. Liu, J.-P. Wang, and C.-N. Lin, "Structure-activity relationship studies on chalconederivatives: the potent inhibition of chemical mediators release,"Bioorganic and Medicinal Chemistry, vol. 11, no. 1, pp. 105–111,2003.
- [7] P. Tuchinda, V. Reutrakul, P. Claeson et al., "Anti-inflammatorycyclohexenyl chalcone derivatives inBoesenbergia pandurata," Phytochemistry, vol. 59, no. 2, pp. 169–173, 2002.
- [8] S. N. A. Bukhari, I. Jantan, and M. Jasamai, "Anti-inflammatorytrends of 1, 3-diphenyl-2-propen-1-one derivatives," Mini-Reviews in Medicinal Chemistry, vol. 13, pp. 87–94, 2013.
- [9] J. N. Dom'inguez, C. Le'on, J. Rodrigues, N. G. De Dom'inguez, J. Gut, and P. J. Rosenthal, "Synthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivatives," Journal of Medicinal Chemistry, vol. 48, no. 10, pp. 3654–3658, 2005.
- [10] S. Shettigar, K. Chandrasekharan, G. Umesh, B. K. Sarojini, Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer, Polymer, 2006, 47, 3565.
- [11] A. Delavaux, B. Nicot, J. Maynadie, D. Lavabre, Ca2+ vs. Ba2+ electrochemical detection by two disubstituted ferrocenyl chalcone chemosensors. Study of the ligand-metal interactions in CH3CN, J. Organometalic. Chem., 2007, 692, 874.
- [12] E. I. Gasull, S. E. Blanco, F. H. Ferretti), A theoretical and experimental study of adsorption from dilute cyclohexane solutions of nonelectrolytes: 4-X-chalcones on silica gel, J. Mol. Struct. (Theochem), 2002, 579, 121.
- [13] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [14] H.B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, 3, 214–218.
- [15] Silverstein, R.M., Bassler, G.C., Morrill, T.C. (1991) Spectrometric Identification of Organic Compounds, John Wiley, Chichester.
- [16] Socrates, G. (2001) Infrared and Raman Characteristic Group Frequencies-Tables and Charts, third ed., Wiley, New York.
- [17] A.N. Prabhu, A. Jayarama, K. Subrahmanya Bhat, V. Upadhyaya, J. Mol. Struct. 1031, 79 (2013).
- [18] G. Keresztury, in: Handbook of Vibrational Spectroscopy, Eds. J.M. Chalmers, P.R. Gri-ths, Vol. 1, Wiley, New York 2002.
- [19] G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley, New York 1974
- [20] C. Sridevi, G. Velraj, Spectrochim. Acta A 107, 334 (2013).
- J. Zinczuk, A.E. Ledasma, S.A. Brandan, O.E. Piro, J.J.L. Gonzalez, A.B. Atabef, Structural and vibrational study of 2-(2'- furyl)-4,5-1 H -dihydroimidazole, J. Phys. Org. Chem., 2009, 22, 1166-1177.
- [22] N. Ramesh Babu et al., Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods, Spectrochim Acta., 2014, 120, 314-322.
- [23] H. Alyar, Z. Kantarci, M. Bahat, E. Kasap, Investigation of torsional barriers and nonlinear optical (NLO) properties of phenyltriazines, J. Mol. Struct., 2007, 834,516–520.
- [24] Scrocco E, Tomasi J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quantum Chem. 1978;11:115.
- [25] R.G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049-4050.